Properties of B^{**} and B_c Mesons E. Cheu University of Arizona (D0 Collaboration) - Introduction - B** Analysis - B_c Analysis - Summary ### Introduction - B^{**} and B_c provide means for understanding heavy quark spectroscopy. - Useful test of quark models. - B** is closest QCD analogue of hydrogen system. - In HQET, b quark decouples from light degrees of freedom. - B mesons labeled by j_q of the light quark. - $\mathbf{j_q} = \mathbf{L} + \mathbf{s_q}$: Total angular momentum of light quark. - $\mathbf{J} = \mathbf{j_q} + \mathbf{s_Q}$: Total angular momentum of system. ## B Meson Spectroscopy - L=0 states are the familiar B and B^* mesons. - L=1 states collectively called B^{**} . • $$j_q = \frac{1}{2}$$ $J = 0, 1 \to B_0^*, B_1^*$ • $$j_q = \frac{3}{2}$$ $J = 1, 2 \rightarrow B_1, B_2^*$ - States within each doublet degenerate in mass. - Degeneracy broken because m_b is not infinite. # B^{**} Spectroscopy - $j_q = \frac{1}{2}$ decays via S-wave. - Expected to be broad. - $j_q = \frac{3}{2}$ decays via D-wave. - Expected to be narrow. - $B_1 \rightarrow B\pi$ - $B_2^* \to B\pi, B^*\pi$ - Theory - $M(B_1) \sim 5700 5755$ - $M(B_2^*) \sim 5715 5767$ - $\Gamma_{1,2} \sim 20 \text{ MeV/c}^2$ ### Previous B^{**} Results | Experiment | Reconstruction | B_j mass (MeV/c ²) | B_j Width | |------------|-------------------|----------------------------------|--------------| | ALEPH | exclusive | 5695 ± 18 | 53 ± 16 | | CDF | $(\mu D) + \pi$ | 5710 ± 10 | NA | | DELPHI | inclusive $B+\pi$ | 5732 ± 21 | 145 ± 28 | | OPAL | inclusive $B+\pi$ | 5681 ± 11 | 116 ± 24 | - None of these experiments resolved four states. - Either inclusive or statistics limited. - Measured widths probably includes many states. - PDG average mass: $5698 \pm 8 \text{ MeV/c}^2$. ### **D0** Detector - Muon coverage out to $|\eta| < 2.0$ - Tracking with silicon vertex detector. - 2.0T Magnetic field. ## Data Set B** analysis: 350 pb-1 • B_c analysis: 210 pb-1 ### B^{**} Event Selection - Two oppositely charged muons $(2.8 < m < 3.35 \text{ GeV/c}^2)$. - Constrain to J/ψ mass. - Require additional particles to form B meson. - K^{\pm}, K^{*0}, K_s . - Require large B decay length significance (L/σ_L) . - Require B momentum along direction from primary to decay vertex. ### Reconstructed B Masses $$B^{\pm} \to J/\psi K^{\pm}$$ $\mu^{+}\mu^{-}$ 7217 ± 127 events. $$B_d \rightarrow J/\psi K^{*0}$$ $K^+\pi^ 2826 \pm 93$ events. ### B^{**} Reconstruction - Select B^+ and B_d^0 candidates. - Combine with π^{\pm} candidate from primary vertex. - Plot $M(B\pi) M(B)$. - Mass difference improves resolution. - Expect three peaks. - $B_1 \to B^*\pi$ ($B_1 \to B\pi$ forbidden by J, P cons). - $B_2^* \to B^*\pi$ - $B_2^* \to B\pi$ - Ignore γ from B^* decays. - Shifts mass difference by 46 MeV/c². - Cannot distinguish wide $j_q = \frac{1}{2}$ states from bkg. ### Mass Difference ### First observation of separate states. $N(B^{**}) = 536 \pm 114$, $\sim 7\sigma$ significance. ## Signal Fit $$N_{sig} = N\left(f_1 \times G(\Delta_1, \Gamma_1) \qquad B_1 \to B^*\pi \quad (273 \pm 59) + (1 - f_1)\{f_2 \times G(\Delta_2, \Gamma_2) \qquad B_2^* \to B^*\pi \quad (131 \pm 30) + (1 - f_2)G(\Delta_2, \Gamma_2)\}\right)$$ - N: Number of B** candidates. - f_1 , f_2 : B_1 fraction of total, $BF(B_2^* \to B^*\pi)$. - G: Breit-Wigner convoluted with a gaussian. - $\Gamma_{1,2}$, $\Delta_{1,2}$: $B_{1,2}$ width and mass difference. - Theory: $\Gamma_1 = \Gamma_2$ and $f_2 = 0.5$. - MC: ΔM resolution = 10.3 MeV/c². ## **Consistency Checks** Signal is evident for B^{\pm} decays. Signal is evident for B_d^0 decays. $N=32\pm36$ for events where pion is inconsistent with primary vertex. # Systematic Errors #### **Preliminary** | Source | $M(B_1)$ | $M(B_2^*) - M(B_1)$ | $\Gamma_{1,2}$ | f_1 | |----------------------------------|-------------|---------------------|----------------|-------| | | (MeV/c^2) | (MeV/c^2) | (MeV/c^2) | | | Background shape | 2 | 2.2 | 4.5 | 0.03 | | $B_2^* o B^*\pi$ rate (0.0-0.7) | 6 | 3.1 | 6.2 | 0.21 | | Float Γ_2 | 0 | 0.5 | 1.4 | 0.02 | | Mass resolution | 2 | 0.6 | 7.1 | 0.03 | | Momentum scale | 1 | 0.1 | 0.0 | 0.00 | | Total | 6.7 | 3.9 | 9.3 | 0.21 | | | | | | | ### B^{**} Results ### **Preliminary** First observation of B_1 and B_2^* separation. - $M(B_1) = 5724 \pm 4 \pm 7 \text{ MeV/c}^2$. - $M(B_2^*) M(B_1) = 23.6 \pm 7.7 \pm 3.9 \text{ MeV/c}^2$. - $\Gamma_1 = \Gamma_2 = 23 \pm 12 \pm 9 \text{ MeV/c}^2$. - $f_1 = 0.51 \pm 0.11 \pm 0.21$. First errors are statistical and second errors are systematic. ### B_c Mesons - Last of ground state mesons to be observed. - Good test of quark models. - Theory - $M(B_c) \sim 6.4 \text{ GeV/c}^2$ - Lifetime 0.3-0.5 ps - Only previous result: CDF Run I - $20.4^{+6.2}_{-5.5}$ events. - $M(B_c) = 6.40 \pm 0.39 \pm 0.13 \text{ GeV/c}^2$. - $\tau(B_c) = 0.46^{+0.18}_{-0.16} \pm 0.03 \text{ ps}$ ### B_c Event Reconstruction • $$B_c^{\pm} \to J/\psi \mu^{\pm} \nu$$ $$\mu^{+} \mu^{-}$$ - Require $M(\mu^+\mu^-)$ within 0.25 GeV/c² of J/ψ . - Constrain mass to J/ψ . - Combine with extra high-quality μ in event. - Backgrounds estimated with J/ψ + non- μ track. # B_c Fit - B_c signal is extracted from a simultaneous unbinned likelihood fit to $J/\psi\mu$ mass and $J/\psi\mu$ proper time. - Performed for a variety of mass hypotheses. # B_c Signal - Background probability density determined from $J/\psi+$ track events. - $T < 0 \rightarrow \text{prompt bkg.}$ - $T > 0, 2 \rightarrow \text{heavy}$ flavor bkg. - Excess composed of: - $B_c \to J/\psi \mu \nu$ - $B_c \to \psi(2S)\mu\nu$ - $B_c \to J/\psi \mu \nu \pi^0$ # B_c Backgrounds - Look for feeddown from $B_c^+ \to \psi(2S)\mu^+\nu$. - $\psi(2S) \to J/\psi X$. - Observe fewer than 15 $\psi(2S)$ candidates. - Use this to fix feeddown fraction at $(15 \pm 15)\%$. - Use B_u and B_d decays as guide for non-resonant backgrounds $(15 \pm 15\%)$. # **Check of Background Estimation** - Expect $B_c^+ \to \psi(2S)\mu^+ X$, $\psi(2S) \to \mu^+ \mu^-$ sample to be dominated by background. - $B_c^+ \to \psi(2S)\mu^+ X \sim$ 5-100 times smaller than $B_c^+ \to J/\psi \mu^+ \nu$. - Compare J/ψ + track sample to $B_c^+ \to \psi(2S) \mu^+ X$ sample. - Test of heavy flavor background. # B_c Consistency Checks - Simple counting experiment. - Normalize background sample to events with T>2. - See excess consistent with B_c signal. # Systematic Studies | Source | Mass (GeV/ c^2) | Lifetime (ps) | # Signal | |--|--------------------|---------------|----------| | Limited background statistics | 0.06 | 0.013 | 3.0 | | Fraction non-resonant $B_c^+ \to J/\psi \mu^+ \pi^0 \nu$ | 0.14 | 0.022 | 6.7 | | Feed-down fraction from $B_c^+ \to J/\psi(2S)\mu^+\nu$ | 0.08 | 0.017 | 5.4 | | MC signal modeling: phase space vs. ISGW | 0.16 | 0.023 | 4.4 | | MC signal modeling: HQET vs. ISGW | 0.06 | 0.007 | 1.8 | | $B_c \; p_T \; spectrum$ | 0.05 | 0.004 | 0.8 | | Momentum binning | 0.14 | 0.062 | 0.4 | | Alignment and primary vertexing algorithm | 0.08 | 0.085 | 3.1 | | Vertex algorithm selection criteria | 0.06 | 0.028 | _ | | Prompt/heavy relative bkgd fraction | 0.15 | 0.036 | _ | | Total systematic error | 0.34 | 0.121 | 10.7 | ### B_c Result - Events: $95 \pm 12 \pm 11$. - Mass: $5.95^{+0.14}_{-0.13} \pm 0.34$ GeV/c². - Lifetime: $0.448^{+0.123}_{-0.096} \pm 0.121$ ps. First errors are statistical and second errors are systematic. ## Summary - D0 has made new observations of B^{**} and B_c mesons. - First time separation of B_1 and B_2^* is observed. - New results on B_c with significantly more statistics. - Expect new and interesting discoveries in B mesons from the Tevatron.